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Abstract

A method for real-time estimation of parameters
in a linear dynamic state space model was developed
and studied.  The application is aircraft dynamic model
parameter estimation from measured data in flight for
indirect adaptive or reconfigurable control.  Equation
error in the frequency domain was used with a recursive
Fourier transform for the real-time data analysis.
Linear and nonlinear simulation examples and flight
test data from the F-18 High Alpha Research Vehicle
(HARV) were used to demonstrate that the technique
produces accurate model parameter estimates with
appropriate error bounds.  Parameter estimates
converged in less than 1 cycle of the dominant dynamic
mode natural frequencies, using control surface inputs
measured in flight during ordinary piloted maneuvers.
The real-time parameter estimation method has low
computational requirements, and could be implemented
aboard an aircraft in real time.

Nomenclature
A,B,C,D system matrices

E   ; @ expectation operator

g acceleration due to gravity, ft/sec2

h altitude, ft

j imaginary number = -1
M Mach number
N total number of samples
Re real part
R measurement noise covariance matrix
t time
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Vt true airspeed, ft/sec
x, u, y state, input, and output vectors

zi measured output vector at time i tD
α angle of attack, rad
β sideslip angle, rad
δ δa r, aileron, rudder deflections, rad

δ δe s, elevator, stabilator deflections, rad

δ ij Kronecker delta

ν i discrete measurement noise vector

σ 2 variance
ω angular frequency, rad/sec
θ p-dimensional parameter vector

superscripts

T transpose
† complex conjugate transpose
~ discrete Fourier transform
  $ estimate
–1 matrix inverse

subscripts

i value at time i tD
o trim or initial value

Introduction

Real-time identification of dynamic models is a
requirement for indirect adaptive or reconfigurable
control1.  One approach for satisfying this requirement
is to assume the dynamic model has a linear structure
with time-varying parameters to account for changes in
the flight condition, stores, configuration, remaining
fuel, or from various types of failures, wear, or damage.
The task is then to identify accurate linear model
parameter estimates from measured data in real time, so
that the adaptive control logic can make the necessary
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changes to the control law to achieve stability and
performance goals.

Two main problems plague accurate real-time
parameter estimation: noise and data information
content.  It is difficult to design a parameter estimation
technique that is insensitive to noise but still responds
rapidly to sudden changes in the system dynamics,
mainly because it takes a fairly long data record to
distinguish noise from a sudden change in the
dynamics.  This problem can be handled in the time
domain using recursive least squares and a "forgetting
factor"2, or by using sequential batch least squares with
short data records and including various constraints in
the parameter estimation cost function3,4.  If an
extended Kalman filtering approach5-8 is used,
discriminating signal from noise is implemented
through weighting matrices that represent assumed
measurement and process noise covariances.  For all of
these time domain methods, some adjustment of one or
more tuning parameters must be done in simulation.  In
addition, the standard errors for the model parameter
estimates, which are important both for failure
detection and adaptive or reconfigurable control,
cannot be accurately and reliably computed using
recursive or sequential batch time domain methods.

In the context of airplane flight, lack of
information content in the data can be problematic
because there are frequently extended periods where
the control and state variables are fairly constant.
Signal levels are at or below the (relatively constant)
noise level.  In this circumstance, a time domain
regression method will give very inaccurate parameter
estimates unless the estimation is regularized by
including a term in the cost function that penalizes
movement of the parameters away from some a priori
known values (e.g., values from wind tunnel tests),
and/or a term that penalizes time variation of the
parameter estimates4.  Tuning parameters are required
for this approach, because the magnitude of the penalty
term(s) must be balanced properly relative to the least
squares part of the cost function used for parameter
estimation based on measured data.  Another problem
that falls in the category of poor data information
content is data collinearity due to the control system9.
Many control laws move more than one control surface
at the same time, or move control surfaces in
proportion to state variables with a small time delay.
When states and controls are nearly proportional to one
another, it is impossible to identify individual stability
and control derivatives from the measured data alone.

There are many parameter estimation methods,
but the requirement of being simple enough to be

implemented in real time aboard the aircraft narrows
the field.  In particular, any method that iterates through
the data must be eliminated.  The current work is an
investigation of a single-step frequency domain method
for the real-time parameter estimation task, and an
evaluation of its suitability for aircraft problems.  This
real-time parameter estimation method was first
proposed as a component of a technique for in-flight
system identification10.  In the present work, the
real-time parameter estimation method is developed
further and applied to realistic simulation and flight test
data.

The next section gives the problem statement and
outlines the necessary theory.  Following this, the
real-time parameter estimation method is applied to a
simulation example, where a linear truth model is used
with outputs corrupted by noise similar to that seen in
flight, and noise that is worse than usual.  The
application is identifying an accurate model for the
longitudinal rigid body dynamics of a conventional
fighter.  The real-time parameter estimation procedure
is further demonstrated with a longitudinal example
using flight test data, and a nonlinear simulation
example where both longitudinal and lateral/directional
parameters are estimated.

Theoretical Development

Airplane dynamics can be described by the
following linear model equations11:

&x Ax But t t1 6 1 6 1 6= + (1)

x x01 6 = o (2)

y C x D u( ) ( ) ( )t t t= + (3)

z yi i i= +ν i N= 12, , ,K (4)

Matrices A, B, C, and D in Eqs. (1) and (3)
contain stability and control derivatives, which are
assumed as constant model parameters to be estimated
from flight data.  Repeating the parameter estimation at
short intervals produces piecewise constant estimates
for time-varying model parameters in the linear model
structure.  The input quantities are control surface
deflections δ e1  or δ s , δ δa r, 6, with the states selected

from air data Vt , ,α β1 6 , body axis angular velocities

p q r, ,1 6 , and Euler angles φ θ ψ, ,1 6.  Output
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quantities can include the states and translational

accelerations a a ax y z, ,3 8.

Equation Error in the Frequency Domain

The finite Fourier transform of a signal x t1 6  is

defined by

~x x t e dtj tT
ω ω1 6 1 6� -I0 (5)

which can be approximated by

~x t x ei
j t

i

N
iω ω1 6   -

=

-

ÊD
0

1

(6)

Subscript i indicates the variable value at time i tD , and
Dt  is the sampling interval.  The summation in Eq. (6)
is defined as the discrete Fourier transform,

X x ei
j t

i

N
iω ω1 6 � -

=

-

Ê
0

1

(7)

so that

~x X tω ω1 6 1 6  D (8)

Some fairly straightforward corrections12 can be
made to Eq. (8) to remove the inaccuracy resulting
from the fact that Eq. (8) is a simple Euler
approximation to the finite Fourier transform of Eq. (5).
However, if the sampling rate is much higher than the
frequencies of interest (as is true in this case), then the
corrections are small and can be safely ignored.

Applying the Fourier transform to Eqs. (1) and (3)
gives

jω ω ω ω~ ~ ~x A x B u1 6 1 6 1 6= + (9)

~ ~ ~y C x D uω ω ω1 6 1 6 1 6= + (10)

When the states, outputs, and inputs are
measured, individual state or output equations from
vector Eqs. (9) or (10) can be used in an equation error
formulation to estimate the stability and control
derivatives contained in matrices A, B, C, and D.

For the kth state equation of vector Eq. (9), the
cost function is

J j x n n nk n k k k
n

m

= - -
=

Ê1

2

2

1

 ω ~ ~ ~1 6 1 6 1 6A x B u (11)

where Ak  and Bk  are the kth rows of matrices A and

B , respectively, and ~x nk 1 6  is the kth element of vector
~x  for frequency ω n .  Symbols ~x n1 6 and ~u n1 6  denote

the Fourier transform of the state and control vectors
for frequency ω n .  There are m terms in the summation,
corresponding to m frequencies of interest, and each
transformed variable depends on frequency.  Similar
cost expressions can be written for individual output
equations from vector Eq. (10).  Denoting the vector of
unknown model parameters in Ak  and Bk  by θ , the
problem can be formulated as a standard least squares
regression problem with complex data,

Y X= +θ ε (12)

where

Y �

�
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and ε  represents the complex equation error in the
frequency domain.  The least squares cost function is

J = 1

2
Y X Y X- -θ θ1 6 1 6†

(15)

which is identical to the cost in Eq. (11).  The
parameter vector estimate that minimizes this cost
function is computed from13

$ Re Re† †θ =
-

X X X Y2 7 2 71
(16)

The estimated parameter covariance matrix is

cov $ $ $ Re †θ θ θ θ θ4 9 4 94 9 2 7� %&'
()* =

-

E
T

− − σ 2
1

X X (17)
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where the equation error variance σ 2  can be estimated
from the residuals,

$ $ $†
σ 2 = 1

m p-
- -�

! 
"
$#1 6 4 9 4 9Y X Y Xθ θ (18)

and p is the number of elements in parameter vector θ .
Parameter standard errors are computed as the square

root of the diagonal elements of the cov $θ4 9 matrix from

Eq. (17), using $σ 2  from Eq. (18).

Recursive Fourier Transform

For a given frequency ω , the discrete Fourier
transform in Eq. (7) at sample time i is related to the
discrete Fourier transform at time i -1 by

X X x ei i i
j i tω ω ω1 6 1 6= +

-
-

1
D (19)

where

e e ej i t j t j i t- - - -=ω ω ωD D D11 6 (20)

The quantity  e
j t- ωD  is constant for a given

frequency and constant sampling interval.  It follows
that the discrete Fourier transform can be computed for
a given frequency at each time step using one addition
in Eq. (19) and two multiplications – one in Eq. (20)
using the stored constant e j t- ωD  for frequency ω , and
one in Eq. (19).  There is no need to store the time
domain data in memory when computing the discrete
Fourier transform in this way, because each sampled
data point is processed immediately.  Time domain data
from all preceding maneuvers can be used in all
subsequent analysis by simply continuing the recursive
calculation of the Fourier transform.  In this sense, the
recursive Fourier transform acts as memory for the
information in the data.  More data from more
maneuvers improves the quality of the data in the
frequency domain without increasing memory
requirements to store it.  In addition, the Fourier
transform is available at any time i tD .  The
approximation to the finite Fourier transform is
completed using Eq. (8).

Rigid body dynamics of piloted aircraft lie in the
rather narrow frequency band of approximately
0.01-1.5 Hz.  It is therefore possible to select
closely-spaced fixed frequencies for the Fourier
transform and the subsequent data analysis.  For all the
examples studied in this work, frequency spacing of

0.04 Hz on the interval [0.1-1.5] Hz was found to be
adequate, giving 36 evenly spaced frequencies for each
transformed time domain signal.  Excluding zero
frequency removes trim values and measurement
biases, so it is not necessary to estimate bias
parameters.  Using a limited frequency band for the
Fourier transformation confines the data analysis to the
frequency band where the system dynamics reside, and
automatically filters wide band measurement noise or
structural response outside the frequency band of
interest.

For airplane dynamic modeling, the number of
time domain signals to be transformed is usually low (9
or less – more if there are many control surfaces), so
this approach requires a small amount of computer
memory.  Since the data analysis is done in the
frequency domain, the memory required is fixed and
independent of the time length of the flight maneuvers.

The recursive Fourier transform update need not
be done for every sampled time point.  Skipping some
time points effectively decimates the data prior to
Fourier transformation.  This saves computation, and
does not adversely impact the frequency domain data
because the Nyquist frequency (equal to ½ the
sampling frequency) is usually much higher than the
relatively low frequencies being used in the recursive
Fourier transform.

Examples

For longitudinal aircraft short period dynamics,
the state vector x and input vector u in Eq. (1) are
defined by

x u= =α δq
T

e (21)

System matrices containing the model parameters are:

A B=
��

! 
"
$#

=
�
!
  

"
$
##

Z Z

M M

Z

M
q

q

e

e

α

α

δ

δ
(22)

The above model assumes &α  effects can be subsumed
into the �Z Mq q and  derivatives.  Parameter �Zq  includes

the inertial term, i.e., � = +Z Zq q1 . In this and all the

other examples, state equations were used for the
equation error parameter estimation.

In the first example, a perturbation elevator input
was applied to a known linear model to produce
simulated state and output responses.  Figure 1 shows
the elevator input δ e .  The first 8 seconds of the
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elevator input were taken from measured flight test data
for a longitudinal tracking task.  Constant elevator
deflection is held for the final 7 seconds, to simulate
low data information content.  The simulated aircraft is
a conventional F-1611,14 with forward c.g. position
(0.2 c ) in straight and level trimmed flight at 10,000 ft,
7 deg angle of attack, and Mach 0.37.  The simulated
outputs were corrupted with 20% Gaussian random
white noise.  This made the signal-to-noise ratio 5-to-1
for each simulated output measurement.  Figure 2
shows the simulated measured perturbation angle of
attack α and pitch rate q.  The elevator input was
assumed to be measured without noise, which is a close
approximation to reality.  Model parameter values used
to generate the simulated test data, called true values,
are given in column 2 of Table 1.  Parameter estimation
was done in real time using equation error in the
frequency domain applied to the two state equations,
with the Fourier transform computed recursively, as
described previously.  All angular quantities were
expressed in radians for the data analysis, but were
plotted in degrees.  Angular rates were expressed in
radians per second for the data analysis, and plotted in
degrees per second.

Figure 3 shows a time history of Mα  model
parameter estimates based on the simulated noisy data
only.  Plots for the other model parameters were
similar.  The model parameter estimates and standard
errors were computed once a second using Eqs.
(16)-(18) with frequency domain data from the
recursive Fourier transform in Eqs. (19) and (20).  This
update rate for the parameter estimation was used
throughout the examples, but was chosen arbitrarily.
Parameter estimation updates can be done at a faster or
slower rate, with the upper limit defined by the rate
used in the recursive Fourier transform.  The algorithm
required no starting values for the parameters, and the
estimates were not regularized in any way with a priori
values or constraints on temporal changes in the
parameter estimates.  The first parameter estimates are
shown at 2 seconds, because the parameter estimates
after 1 second were poor with very large standard
errors, due to the lack of information content in the data
during the first second of the maneuver.  Figure 3
shows that the parameter estimates converge to the true
value.  The calculated standard errors are representative
of the estimated parameter accuracy throughout the
maneuver, and do not suffer from the covariance
wind-up problem characteristic of recursive time
domain methods.  Column 3 of Table 1 contains
parameter estimates with corresponding standard errors
in parentheses below.  These results are for the end of
the 15 second maneuver.  Every parameter estimate is

within ±1 standard error of the true value, indicating
that the parameter estimation is accurate, and the
estimated standard errors properly represent the true
accuracy of the parameter estimates.  The calculated
standard errors accurately convey information on the
quality of the parameter estimates throughout the
maneuver, and do not become smaller with increasing
maneuver time when there is no information in the data.

Figure 4 shows the same simulated model pitch
rate output using the same input to the same model, but
with the added Gaussian random noise level raised
from 20% to 50%, reducing the signal-to-noise ratio to
2-to-1.  In addition, two simulated data dropouts with
values of –100 were added to the simulated pitch rate
output.  Plots in Figure 5 show that the parameter
estimates in this case again converge to the true values,
although the standard error values are generally higher,
due to the increased noise level.  Plots for the model
parameters not shown were similar. The convergence
rate of the parameter estimates to the true values was
similar to the lower noise case, requiring approximately
4 seconds of data.  This corresponds to approximately
1.4 periods of the short period natural frequency for the
simulation model.  Considering that no substantial
information is contained in the data for the first two
seconds, this is an excellent result.  Discounting the
first two seconds, the parameters were accurately
estimated from approximately 2 seconds of data,
corresponding to 0.7 cycles of the short period mode.
The real-time parameter estimation algorithm is robust
to measurement noise levels and infrequent data
dropouts because of the automatic filtering inherent in
using a limited bandwidth for the recursive Fourier
transform.  In effect, the data dropouts look the same as
high frequency noise.  Column 4 of Table 1 gives the
parameter estimates and standard errors for the 50%
noise case at the end of the 15 second maneuver.  As
before, every parameter estimate is within ±1 standard
error of the true value, indicating that the parameter
estimates and standard errors are accurate.

The linear simulation and the real-time data
analysis were programmed and run in MATLAB 5.315.
Sampling rate for the data was 40 Hz, and the recursive
Fourier transform updates were done at 20 Hz.  The
real-time estimation algorithm ran roughly 10 times
faster than real time (1.5 seconds for a 15 second
maneuver) on a Gateway 450 MHz E-4200 serial
processor, running Microsoft Windows NT 4.0.

The next example used real flight test data from
the F-18 High Alpha Research Vehicle (HARV) to
demonstrate the real-time parameter estimation method.
Figure 6 shows the measured stabilator deflection for
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this 14 second maneuver.  Measured outputs are shown
in Figure 7.  The maneuver was a sequence of doublets
implemented by the pilot from a steady trim condition
at 20 deg angle of attack, 24,100 ft altitude, and Mach
0.37.  Parameter estimates are plotted as a function of
time in Figure 8, along with dashed lines indicating the
�2 $σ  error bounds.  Parameter estimates from standard
batch time domain output error parameter estimation16

are plotted as solid lines for comparison.  The real-time
parameter estimation algorithm produced parameter
estimates and standard errors that were in agreement
with the batch time domain estimates after about 5
seconds, of which 1.5 seconds was steady trim with no
information in the data.  One cycle of the short period
mode using the batch time domain parameter estimates
was 7.5 seconds.  Table 2 contains results at the end of
the 14 second maneuver from batch time domain and
real-time frequency domain parameter estimation.

As in the simulated data cases, the standard errors
for the parameter estimates computed by the real-time
parameter estimation algorithm were consistent with the
accuracy of the parameter estimates throughout the
maneuver.  Specifically, the error bounds were large at
the beginning of the maneuver, and smaller as more
information was obtained from the data. Except for a
few instances that are to be expected because of
statistical variation, the standard errors were
representative of the accuracy of the estimated
parameters.

Sampling rate for the flight test data was 50 Hz,
and the recursive Fourier transform updates were done
at 25 Hz.  The same implementation and computer as
before were used.  In this case, the real-time parameter
estimation algorithm ran roughly 14 times faster than
real time (1 second for a 14 second maneuver), because
of the lower rate used for the recursive Fourier
transform.

In the final example, control surface inputs
measured in flight during a piloted longitudinal/lateral
tracking task were applied to a nonlinear F-16
simulation11,14 with forward c.g. position (0.2 c ).
Figure 9 shows the control surface inputs.  The
maneuver was initiated from a steady trim condition at
10 deg angle of attack, 10,000 ft altitude, and
Mach 0.32.  Simulated output data from the nonlinear
simulation was corrupted with 20% white gaussian
noise.  The simulated noisy outputs are plotted in
Figure 10.  In this case, the lateral/directional linear
model parameters were estimated in addition to the
longitudinal model parameters from Eqs. (21)-(22).

For the lateral/directional aircraft dynamics, the
state vector x and input vector u in Eq. (1) are defined
by

x u= =β φ δ δp r
T

a r
T

(23)

System matrices containing the model parameters are:

A =

-�

!
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$

######
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g

V
L L L

N N N

t

p r

p r

β

β

β

α α θ

θ

sin cos cos

tan

0

0

0 1 0

(24)

B =

�

!

    

"

$

####

0

0 0

Y

L L

N N

r

a r

a r

δ

δ δ

δ δ
(25)

Figure 11 shows time histories of selected
longitudinal and lateral/directional model parameter
estimates, with dashed lines indicating the �2 $σ  error
bounds. Comparison values for the stability and control
derivatives (plotted as solid lines) were calculated from
the nonlinear simulation using central finite differences
with a 1% perturbation size. Plots for the model
parameters not shown were similar.  As in the other
examples, the performance of the real-time estimation
algorithm was excellent, in spite of a relatively short
(10 second) maneuver and low information content
longitudinally.  Parameter estimates converged to the
finite difference values with appropriate standard error
estimates.  Cycle times for the short period and Dutch
roll modes, based on the finite difference parameter
values, were 3.8 seconds and 2.4 seconds, respectively.
The real-time parameter estimation algorithm required
4 seconds to converge to the finite difference values for
the model parameters using the tracking inputs
measured in flight and plotted in Figure 9.

The sampling rate for the data was 80 Hz, and the
recursive Fourier transform updates were done at
40 Hz.  For the same implementation and computer as
before, the real-time estimation algorithm for the
longitudinal and lateral/directional models together ran
roughly 8 times faster than real time (1.2 seconds for a
10 second maneuver).
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Concluding Remarks

A technique was developed for estimating linear
model parameters in real time, using an equation error
formulation in the frequency domain with a recursive
Fourier transform.  Simulation and flight test examples
demonstrated that the method gives accurate real-time
estimates of model parameters and standard errors.
The examples also showed that the advantages of this
approach include automatic noise filtering, robustness
to high noise levels and data dropouts, fixed memory
requirements regardless of the time record length, no
bias parameters to estimate, and good performance for
low information content in the data.  All of these
favorable characteristics, as well as low computational
requirements, follow from analyzing the data in the
frequency domain with a recursive Fourier
transformation using fixed discrete frequencies within
the frequency range for the dynamic motion of interest.

The practical applicability of the method was
demonstrated using a flight test data example, and a
nonlinear simulation example using real flight test
tracking inputs implemented by the pilot.  Data
information requirements for good parameter estimates
were found to be low enough that they could be
satisfied using ordinary pilot inputs measured in flight.
The algorithm exhibited rapid convergence to accurate
parameter values with standard errors that properly
represented the accuracy of the parameter estimates.
Typical convergence times were less than 1 cycle time
of the dominant dynamic mode.  No starting values
were required for the parameter estimates, no tuning
parameters had to be adjusted, and there was no
temporal or spatial regularization during the parameter
estimation.  Parameter estimates and standard errors
were based on measured data alone.  The procedure
was shown to have reasonable computational
requirements, and ran much faster than real time, even
when implemented in a high level language such as
MATLAB.

The technique could be used for dimensional or
non-dimensional parameter estimation, and could also
be used with general nonlinear models, as long as the
model is linear in the parameters.  All states and inputs
must be measured, but this should not be a problem in
modern aircraft with continuous automatic feedback
control, for which the method is intended.

The real-time parameter estimation technique
studied in this work represents a fundamental building
block for fulfilling the requirements of parameter
estimation for adaptive or reconfigurable control.
Future developments must focus on tracking rapid

time-varying linear model parameters resulting from
changes in the flight condition, stores, configuration,
remaining fuel, or from various types of failures, wear,
or damage.  In addition, there must be some work done
to address the question of excitation input design when
insufficient information content in the data precludes
accurate parameter estimates.
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Table 1  F-16 Linear Simulation Results,
αo = 7 deg, ho = 10,000 ft, Mo = 0.37

Parameter True
Value

20% Noise

Estimate

(Std. Error)

50% Noise

Estimate

(Std. Error)

Zα –0.600
–0.624

(0.047)

–0.602

(0.132)

�Zq 0.950
0.960

(0.016)

0.986

(0.044)

Z
eδ –0.115

–0.104

(0.017)

–0.134

(0.049)

Mα –4.300
–4.197

(0.136)

–4.021

(0.354)

Mq –1.200
–1.238

(0.045)

–1.200

(0.119)

M
eδ –5.157

–5.157

(0.048)

–5.246

(0.130)

Table 2  F18 HARV Flight Test Results,
αo = 20 deg, ho = 24,100 ft, Mo = 0.34

Parameter
Batch

Time Domain
Estimate

(Std. Error)

Recursive
Frequency Domain

Estimate

(Std. Error)

Zα
–0.218

(0.040)

–0.209

(0.084)

�Zq
1.047

(0.036)

1.074

(0.052)

Z
sδ

–0.057

(0.046)

–0.041

(0.080)

Mα
–0.649

(0.044)

–0.509

(0.174)

Mq
–0.063

(0.032)

–0.177

(0.107)

M
sδ

–1.257

(0.063)

–1.415

(0.165)
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Figure 1  Elevator Input
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Figure 2  Simulated Measured Outputs, 20% Noise
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Figure 3  Parameter Estimation, 20% Noise
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Figure 4  Simulated Measured Output, 50% Noise
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Figure 5  Parameter Estimation, 50% Noise
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Figure 6  Stabilator Input
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Figure 7  Measured Outputs
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Figure 8  Parameter Estimation
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Figure 9  Tracking Inputs
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Figure 10  Simulated Measured Outputs, 20% Noise
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Figure 11  Parameter Estimation


